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Abstract—DNA microarray gene expression and microarray-based comparative genomic hybridization (aCGH) have been widely

used for biomedical discovery. Because of the large number of genes and the complex nature of biological networks, various analysis

methods have been proposed. One such method is “gene shaving,” a procedure which identifies subsets of the genes with coherent

expression patterns and large variation across samples. Since combining genomic information from multiple sources can improve

classification and prediction of diseases, in this paper we proposed a new method, “ICA gene shaving” (ICA, independent component

analysis), for jointly analyzing gene expression and copy number data. First we used ICA to analyze joint measurements, gene

expression and copy number, of a biological system and project the data onto statistically independent biological processes. Next, we

used these results to identify patterns of variation in the data and then applied an iterative shaving method. We investigated the

properties of our proposed method by analyzing both simulated and real data. We demonstrated that the robustness of our method to

noise using simulated data. Using breast cancer data, we showed that our method is superior to the Generalized Singular Value

Decomposition (GSVD) gene shaving method for identifying genes associated with breast cancer.

Index Terms—Clustering technique, comparative genomic hybridization (CGH), copy number variation (CNV), generalized singular

value decomposition (GSVD), gene expression, gene shaving, independent component analysis (ICA).

Ç

1 INTRODUCTION

THE human genome is estimated to have about 20,000 to
25,000 protein-coding genes [1]. A variety of techniques

for the analysis of gene expression data have evolved to
exploit the huge amount of information obtained with
oligonucleotide arrays [2] and complementary deoxyribo-
nucleic acid (cDNA) microarrays [3], [4]. DNA microarray
technology has been proven to be an effective approach for
identifying genes which are potential therapeutic molecular
targets [5]. This technique lacks the power for detecting
regional variations of the genome. On the other hand, array
comparative genomic hybridization (aCGH) allows assess-
ment of changes in chromosomal DNA sequence copy
numbers across the genome and provides valuable in-
formation regarding genetic alternations in diseases such as
cancers [6], [7]. The aCGH technology is an invaluable tool
in oncology, which uses microarrays to perform high

resolution and genome-wide screening of DNA copy
number changes. Several important applications of aCGH
have been reported in cancer research [8], and clinical
genetics [9].

With the vast increase in biological information, the
problem of integrating different types of genomic measure-
ments has become a great challenge. The integration of
chromosomal copy number variation (CNV) with gene
expression will probably identify new therapeutic targets
that could not be identified by analysis of independent
platforms alone [10]. Recent investigations [11], [12], [13], [14]
have shown the promise of integrated analysis of CNV and
gene expression. Most studies demonstrate that copy number
variation affects the expression levels of those genes con-
tained within that CNV. Copy number variations are both
directly and indirectly correlated with changes in expression
and it is beneficial to examine the indirect effects of CNVs
[11]. Optimal power to find such associations can only be
achieved by analyzing copy number and gene expression
jointly [12]. By combining genomic data from different
sources, it is possible to obtain an integrated genome-wide
view of gene aberration and their effects on gene expression
[13], [14]. Gene over or underexpressions usually correspond
to increased or decreased copy numbers, respectively (e.g.,
see Fig. 1). An integrated analysis of gene expression data
with copy number data can reveal their intrinsic connections.

Combined analysis of copy number and gene expression
microarrays of the same or similar tumor samples has
revealed a major and direct effect of allelic imbalance on
gene expression in a variety of cancer types, including
breast [15], [16], pancreatic [17], colorectal [18], prostate
[19], and lung [20] cancer. On a global level, 40-60 percent of
the genes at higher level of amplification showed elevated
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expression, while 10 percent of highly over-expressed genes
were amplified. In low-level copy number aberrations, only
about 10 percent of the genes have been reported to show
coherent changes in gene expression [21]. Fig. 1 displays the
Pearson correlation coefficients for all possible combina-
tions of gene expression and copy number changes from the
NCI-60 cell lines [22], indicating that a correlation exists
between the expression levels of genes and copy number
changes around the same locations of the genome (along the
diagonal line). Variations in gene expression and gene copy
number are strongly linked to diseases such as breast cancer
and have a bit positive over negative correlations [23].
Genes in tumorigenesis show associations between copy
numbers and expression levels. Some copy number changes
extend over larger chromosomal regions.

Integrating data from different sources such as gene
expression and copy number can increase the reliability of
the analysis results and the prediction of prognosis. Associa-
tion between copy number changes and gene expression
levels have been studied in [16], [21], [22], and�12 percent of
gene expression variation can be explained by differences in
copy numbers [19]. Integration of DNA copy number
alterations and gene expression profiling may also result in
improved classification and prognosis in breast cancer. For
example, Chin et al. [24] found that the accuracy of risk
stratification according to the outcome of breast cancer
disease can be improved by joint analyses of gene expression
and DNA copy number. Several approaches have been
described to identify a subset of genes, whose expression
levels are most significantly associated with copy number
changes in the corresponding genomic region [25]. The
singular value decomposition (SVD) or the principal
component analysis (PCA) has been a popular method for
analyzing and reducing the dimension of gene data [26], [27].
The SVD model describes the overall observed genome-scale
molecular biological data as the outcome of a simple linear
network. However, the gene expression and copy number
data are separately analyzed using the SVD method. The
generalized singular value decomposition (GSVD) model
describes the two genome-scale molecular biological data
sets as the outcome of a simple linear comparative network,
where a few independent sources, some common to both
data sets whereas some are exclusive to one data set or the
other, affect all the genes in both data sets. In 2006, Berger
et al. [28] applied an iterative shaving method based on the

GSVD of their joint data sets to identify subsets of genes with
similar gene expression or copy number patterns. The SVD
and GSVD models are usually used to model DNA
microarray data. The GSVD is already a trusted method
for analyzing and reducing the dimension of gene data in
two breast cancer cell line and tumor data sets for the
identification of gene subsets that are biologically validated.
The independent component analysis (ICA) and PCA are
very similar in some respects; however, the goals of the two
methods are different. The ICA finds the statistically
independent components and is more suitable for separating
mixed signals and uncovering hidden biological processes
from the observed measurements.

The GSVD-based approach assumes that gene expression
or gene copy number data are generated by the linear
combination of a set of biological processes. However, this
assumption might not be realistic. The ICA uses a more
general statistical assumption (as described in Section 2.2),
which is more appropriate for modeling and analysis of
genomic data. ICA has been recently successfully used for the
joint analysis of fMRI, EEG, and genomic imaging data [29],
[30]. Motivated by these facts, we used the ICA technique to
jointly analyze gene expression and copy number data and
the preliminary results were encouraging [31]. In this paper,
we present our recent results on the development of an ICA-
based iterative dimension reduction method and apply it to
analyze both gene expression and copy number data in order
to identify subsets of genes with coherent expression patterns
and large variation across subjects. We examine the robust-
ness of the method to noise and its convergence properties
using simulated data. We apply the method to breast cancer
cell line and breast cancer tumor studies and demonstrate the
effectiveness of the method. With our proposed algorithm,
we can identify a list of variant genes and select genes that
correspond to functionally related groups. When compared
with the GSVD-based method, improved performance is
obtained in identifying genes that are known to contribute to
the progression of breast cancers.

2 METHOD

We introduce our ICA-based method for the integrated
analysis of gene expression and copy number change data
and then apply it to the identification of gene subsets in the
breast cancer cell and breast tumor data in combination
with a gene shaving method.

2.1 Gene Shaving

Large scale gene expression studies, such as those conducted
using cDNA arrays, often provide millions of data points. A
PCA-based statistical method called “gene shaving” was
introduced in [27] to identify groups of genes that have
coherent patterns of expression with large variance across
samples, or groups of genes that optimally separate the
sample into predefined classes. Gene shaving differs from
hierarchical clustering and other widely used methods for
analyzing gene expression studies in that genes may belong
to more than one clusters, and the clustering may be
supervised by an outcome measure. Fig. 2 shows a schematic
procedure of the gene shaving process based on the PCA. The
goal of gene shaving is to extract coherent and typically small
clusters of genes that vary as much as possible across the
samples. The first principal component of the current cluster
of genes is computed. This eigen-gene is the linear combina-
tion of genes with largest the variance across samples. We
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Fig. 1. Display of the Pearson’s correlation analysis between copy
number and gene expression level across the NCI-60 cell lines. This
indicates correlations existed along the diagonal line where the copy
number variations cause the corresponding gene expression changes.



compute the correlation of each gene with the eigen-gene,
and shave off the genes having lowest correlation.
The process is then repeated on the reduced cluster of genes.

The shaving process shown here requires repeated
computation of the largest component of a large set of
variables and retains the typically 90-95 percent of genes with
the highest variance at each iteration until all clusters (such as
the top 5-10 percent highest variant genes) are found. The
gene shaving method is a potentially useful tool for the
exploration of gene expression data and for identification of
interesting clusters of genes whose expressions are highly
predictive of certain cancers and patient survival.

2.2 ICA Approach

The ICA is a recently developed method in which the goal is
to find a linear representation of unknown non-Gaussian
data so that the components are statistically independent, or
as independent as possible. Such a representation seems to
capture the essential structure of the data in many
applications, including feature extraction and signal separa-
tion. The ICA is becoming an increasingly popular tool for
analyzing biomedical data. Liebermeister [32] proposed
using the linear ICA for microarray analysis to extract
expression modes, where each mode represents the linear
influence of a hidden cellular variable. However, to our
knowledge, no results have been reported to use ICA for
the combined analysis of gene expression and copy number
data sets.

Consider an observed m-dimensional random vector
denoted by XX ¼ ðx1; . . . ; xmÞT , which is generated by the
source signals S with an unknown process [33]

XX ¼ AA�SS þNNt; ð1Þ

where SS ¼ ðs1; . . . ; snÞT is an n-dimensional vector, and is
not observable; AAm�n is an unknown mixing matrix; and NNt

is Gaussian noise. Typically m >¼ n, so AA is usually of full
rank. A typical ICA model assumes that the elements in the
source signal SS are statistically independent, and are mostly
non-Gaussian, with an unknown but linear mixing process.

The goal of ICA model is to estimate a separation matrix
WWn�m such that YY is a good approximation to the true
sources SS

YY ¼WW �XX: ð2Þ

The separation matrix WW is the approximate inverse of

the mixing matrix AA and can be estimated from the

observed data to ensure independent coefficients SS, with

non-Gaussian distributions. Therefore, the ICA is an

approach for solving the blind source separation (BSS)

problem. This approach has been used to solve the cocktail

party problem, where several people are speaking simulta-

neously in the same room. The problem is to separate the

voices of different speakers from their mixed voices

recorded by a few microphones in the room. The ICA

model for blind source separation is shown in Fig. 3.
Some classical approaches to solving BSS problem

include the maximization of information transformation,

maximization of non-Gaussianity, mutual information

minimization, and tensorial methods. Some of the most

commonly used ICA algorithms are the FastICA [34],

Infomax [35] and joint approximate diagonalization of

eigen-matrices (JADE) [36]. In this paper, the FastICA

algorithm was utilized, which has been proven to be

effective for our data. It performs centering and whitening

as a preprocessing step.
We now apply the ICA model to our gene expression

or gene copy number change data and (1) can be

generalized as:

RR ¼ AA�UU þNNt; ð3Þ

where the input matrix RRm�p contains gene expression or

gene copy number data; UUn�p is an n� p matrix containing

all unknown source signals; p is the number of genes and m

is the number of experiments.
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Fig. 2. The procedure of the “gene shaving” method for isolating interesting genes from a set of DNA microarray experiments as used in [27].

Fig. 3. A basic ICA model for blind source separation.



We project each input set onto the kth column of AA
corresponding to the direction of the highest variance to
find the highest parallel contribution from data RR

RRTT �aakk ¼ ðaakT �A�UÞTaak
T �A�UÞT ; ð4Þ

where aakk is a m� 1 vector, i.e., the kth column of AA and TT
denotes matrix transposition.

The projection direction, the kth column of AA can be
sought, corresponding to the maximum value of the sum of
the kth row of matrix AATT:AA.

2.3 Joint ICA

The common technique used to analyze the input data is to
project the original data on a lower-dimensional subspace
expanded by orthogonal components of the decomposition
and find clusters that are tight and far away from other
clusters. Instead of the orthogonal ones, here we get a
subspace spanned by statistically independent components
based on the ICA. We apply the ICA model to uncover the
complex biological process that lead to two different
measurements, e.g., gene expression and gene copy number
variations. Based on the ICA analysis of these two joint data
sets, we accomplish the goal of “gene shaving.” An iterative
dimension reduction method based on ICA is proposed to
analyze both gene expression and copy number data in
order to locate functionally related gene subsets.

Joint ICA [29], [30] is an approach that enables us to jointly
analyze data from multiple modalities collected in the same
set of subjects. The gene expression and copy number data
can be better analyzed in a unified framework in which the
two sets of data are fused. We assume the independence of
gene expression and copy number data, respectively, using
the following generative models for the data:

RA ¼ AA �UA;
RB ¼ AB �UB;

�
ð5Þ

where RRAA and RRBB represent the matrix of gene expression
and copy number changes, respectively; UUAA and UUBB

represent their source signals, and AAAA and AABB are their
mixing matrices. Our idea is motivated by the algorithm for
fusion of fMRI and ERP data proposed by Calhoun et al.
[29], [30] but applied to gene expression and copy number
separately. When the ICA is applied to the union of gene
expression and copy number, it is similar to the algorithm
by Calhoun et al. [30].

Because aberrations in gene expression and gene copy
number are correlated, the elements of the mixing matrices
should be correlated. The idea of creating snapshots of the
ERP and fMRI data can be translated into fusing the mixing
matrices of gene expression and copy number in our case.
Both mixing matrixes can be interacted to find the direction
of the highest variance on both data sets. The joint
contribution from RRAA and RRBB can be computed as

MA ¼ ABj j �AT
A;

MB ¼ AB � AAj jT :

�
ð6Þ

We compute the top 5 percent percent of genes with the
highest parallel contribution from RRAA and RRBB correspond-
ing to the highest variances. We project the original data in
the kth direction as

PA ¼ RT
A �mAk

;
PB ¼ RT

B �mBk
;

�
ð7Þ

where mAk
and mBk

are the kth column of MMAA and MMBB,

corresponding to the direction of the largest variance from

the matrix pair RRA and RRB, respectively.

2.4 Joint ICA-Based Gene Shaving Algorithm

The genes are iteratively projected onto the vector corre-
sponding to the independent component with highest
variance. The projection corresponds to the direction of
highest variation in the original data. The joint ICA method
can be extended to accomplish the goal of “shaving” based
on the chosen direction. We proposed the following
algorithm and its two variants for clustering genes where
the genes may be of different significance in both data sets.
Ninty to ninty-five percent of the genes are retained from
data sets with joint ICA in the direction of the highest
variance, from which the corresponding genes that con-
tribute to cancer progression are identified.

Algorithm 1. Gene shaving is based on the selection of

genes from the aCGH data. The schematic procedure of this

algorithm is shown in Fig. 4, where each individual

procedure is connected with solid lines.

Given the matrix RA of aCGH and the matrix RB of gene

expression for the same organisms or the same clones of the

same samples, we perform the following steps:

1. Preprocess microarray data, quality filtering, nor-
malization, and data transformation.

2. Form the matrix RR ¼ ½RA

RB
�.

3. Compute the mixing matrix MMA using the FastICA
algorithm, analyze and select the direction of
projection.

4. Project R onto the independent component accord-
ing to the chosen direction, which corresponds to
largest variance.

5. Retain the top � ¼ 95% of genes with the highest
contribution from RRA and select the related genes
from RRB corresponding to retained aCGH data.

6. Reform the matrix RR after shaving.
7. Repeat Steps 3-6 if the number of genes is greater

than or equal to the set number of samples.
8. Analyze the clusters with the top 5 percent highest

variant genes through visualization and functional
assessment.

There are two variants of Algorithm 1, depending on the

selection of genes in terms of aCGH and/or cDNA data.

Algorithm 2. Joint ICA gene shaving is based on the

selection of genes from cDNA data. Algorithm 2 is similar

to algorithm 1, but genes are selected in terms of cDNA

data. The schematic procedure of this algorithm is shown in

Fig. 4, in which each individual procedure is connected

through solid and dotted lines.

Algorithm 3. Joint ICA gene shaving is based on the

selection of genes from both the matrix RA of aCGH and
the matrix RB of cDNA. The genes with the lowest

correlation from RA or RB are all shaved off. The schematic

procedure of this algorithm is shown in Fig. 4, in which

each individual procedure is connected through solid and

dashed lines.
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These algorithms are appropriate for different data sets,
which is similar to the GSVD method when using different
project angle parameters [28]. Algorithm 1 depends more
on copy number data; Algorithm 2 depends more on gene
expression; and Algorithm 3 depends on both of them.
We apply these iterative procedures in the following section
to locate functionally related gene subsets, corresponding to
similar and dissimilar patterns of variations in gene
expression and/or gene copy number changes.

3 RESULTS AND DISCUSSION

We applied the ICA gene shaving method for dimension
reduction and clustering analysis of combined aCGH and
cDNA expression data. In order to test the robustness of the
method to noise, we generated simulation data as described
in Berger et al. [28] and compared ICA gene shaving and
GSVD gene shaving when the data contain noise. Our
proposed algorithms were applied to demonstrate efficacy
to real data from breast cancer cell lines and a breast cancer
tumors, which were preprocessed by normalization and
log2-transformation. The algorithms were implemented in
Matlab and the codes and data are available for download
on the website [37].

3.1 Test on Simulation Data

Copy number data were generated using the model
proposed by Wang et al. [38], which defined three states:
amplified (a), deleted (d), and normal (z). Gene expression
data were generated based on the model of Attoor et al. [39].
Gene expression was defined as: over (o), under (u), and
constant (c) expression state. The relation between copy
number and gene expression states was modeled using a
simple state flow. The connection between the data was
modeled by the transition probability matrix [22]

P ¼
Pdu Pdc Pdo
Pzu Pzc Pzo
Pau Pac Pao

2
4

3
5: ð8Þ

In our simulations, we assumed a strictly correlative model
between copy number and gene expression states using the
transition probability matrix, P ¼ I3�3.

By increasing the noise variance, different groups of
genes were observed after the shaving iterations were
completed. In order to evaluate the robustness of the
method to noise, the gene list percentage similarity (PS) was
computed by counting the number of genes obtained from
noisy data (ND) intersecting with that obtained from the
original data (OD) [28]

PS ¼ #ND \#OD

#Tot
� 100%; ð9Þ

where Tot is the number of total genes in the list.
We compared our proposed ICA gene shaving method

with the GSVD gene shaving by analyzing of an ensemble of
1,000 expression and copy number data sets in a simulation
study. Each set has N ¼ P ¼ 1;500 genes in three samples. We
analyzed 75 remaining genes. Additive random noise was
generated 1,000 times for each variance level. We compared
the two methods based on the percentage similarity index.
The results were shown in Fig. 5.

The results in Fig. 5 show that the ranges of PS for both
gene expression and gene copy numbers decrease with the
increase of noise level, regardless of the shaving method
used. The PS value with ICA gene shaving method is
always higher than that of GSVD gene shaving, which
indicates that the ICA gene shaving method is more robust
to the noise.

3.2 Cell Line Case Study

After the proposed ICA gene shaving method has been
proven to be effective on simulated data, it was then tested on
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Fig. 4. The schematic procedure of joint ICA gene shaving to identify gene subsets.



real biological data. Three breast cancer cell lines with similar
copy number profiles on chromosome 17 were analyzed [40].
The SKBR3, BT474, and UACC812 cell lines all have
amplified regions around the ERBB2 gene, which is known
to play roles in the progression of breast cancers [15].

From the original data set from Hyman et al. [15], we parse
out genes from chromosome 17. Each set has N ¼ P ¼ 619
genes in three samples. We retained the top 5 percent of the
most interesting genes in chromosome 17. We detected genes
and genomic locations from gene expressions and copy
numbers with high variations, as shown in Figs. 6 and 7,
respectively. We obtained a list of genes and copy numbers
that captured the highest shared variation with our proposed
method. Fig. 8 shows the list of gene subsets from the ICA
and GSVD gene shaving, respectively, based on gene
expression data, while Fig. 9 displays the list of gene subsets
based on gene copy number changes. Fig. 10 displays the top
15 highest variant genes from combined gene expression and
copy number changes using the ICA and GSVD methods,
respectively.

From the gene list provided, we observe that all ERBB2
genes were successfully extracted using our ICA gene
shaving method while one ERBB2 gene was extracted using
the GSVD gene shaving method. Our method was also able
to uncover several HOX family genes (HOXB3, HOXB6,
and HOXB7), which have been found to contribute to the
progression of several cancer types [41]. Thus, our ICA gene
shaving method found more genes related to breast cancers
than the GSVD gene shaving method.

3.3 Analyzing Breast Cancer Cell Lines and Breast
Cancer Tumors

We present another case study using the data from breast
cancer cell lines [15] and breast tumors [42].

Our ICA gene shaving method was applied to the breast
cancer cell lines [15] with Algorithms 1-3. We report the top
50 of the highest variant genes corresponding to algorithm 3
in Figs. 11 and 12 in terms of gene expression and copy
number ratios, respectively. We can observe the correlation
across the samples for over- or underexpressed genes, in
addition to amplified or deleted genes. The genes in Fig. 11
capture the highest expression variations, which represent
extremely over- and underexpression with similar transcrip-
tional responses. Similarly, the genes in Fig. 12 capture the
highest variation in the copy number changes. We can isolate
the groups of genes that have similar and dissimilar patterns
of gene expression and copy number. The genes with high
copy number changes show highly similar expression
characteristics. Figs. 11 and 12 demonstrate the ability of
our algorithms to locate genes with highest variation and
with the strongest correlation across all the samples.

In the study of 37 breast tumors conducted by Pollack
et al. [42], it was reported that the copy number changes
played a direct role in the transcriptional program of
human breast tumors [42]. Based on the analysis of breast
tumor data, we show the top 50 highest variant genes using
the ICA gene shaving (Algorithms 1-3), respectively, on
both gene expression and copy number data as shown in
Fig. 13. We also compared with the GSVD gene shaving
method of different relative significance as shown in Fig. 14.
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Fig. 5. The effects of additive noise on PS value in cDNA and aCGH
data using GSVD gene shaving and ICA gene shaving algorithm,
respectively.

Fig. 6. Plot of selected genes from cDNA gene expression data. This
plot shows the original cell line expression data for the SKBR3, BT 474,
and UACC812 cell lines over chromosome 17. The circled genes were
selected using our ICA gene shaving method.

Fig. 7. Plot of selected genes from aCGH copy number data. This plot
shows the original cell line copy number data for the SKBR3, BT 474,
and UACC812 cell lines over chromosome 17. The circled genes were
selected using our ICA gene shaving method.



From Figs. 13 and 14, our ICA gene shaving method

has better ability to locate genes with highest variation in

copy numbers than using the GSVD gene shaving

method. The subsets of genes with similarly higher and

lower gene copy number changes can be identified with

the ICA gene shaving method. No patterns of similar gene

expressions were observed in the list of genes with the top

25 highest (positive or negative) variant gene expression

using either the GSVD gene shaving or the ICA gene

shaving method.

We summarize parameters such as p-values in selecting
genes used in the ICA and GSVD-based gene shaving
methods, as in Tables 1 and 2. They are for analyzing both
gene expression and copy number data, and for analyzing
breast cancer cell lines and breast cancer tumors, respec-
tively. The lower P-value is, the more statistically significant
the detected cluster is. Table 2 and Figs. 13, 14 all show that
even though ICA gene shaving method has better quality in
detecting the clusters than the GSVD method, it is not good
enough to distinguish clearly the top highest gene expres-
sions for the study of breast cancer tumors [42].
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Fig. 8. These plots show the selected genes using (a) The GSVD gene shaving method. (b) The ICA gene shaving method, respectively, based on
cDNA gene expression.

Fig. 9. These plots show the selected genes using (a) The GSVD gene shaving method. (b) The ICA gene shaving method, respectively, based on
aCGH copy number data.

Fig. 10. We retain the gene expression values of the top 15 highest variant genes from combined gene expression and copy number changes using
the ICA and GSVD methods, respectively.



We also applied our method to identify gene subsets
that contribute to breast cancer tumors. Genes with the
highest statistical significance include ERBB2, MUC1, and
GRB7 with concomitant changes in copy number and
expression levels. For the tumor samples, our ICA gene
shaving method was able to locate known or candidate
oncogenes successfully. The GSVD gene shaving method
obtained all three oncogenes (ERBB2, CCND1, and MYC)
and two candidate oncogenes (GRB2 and TPD51) corre-
sponding to projection angle “max”; two oncogenes
(ERBB2 and MYC) and two candidate oncogenes (TPD52
and GRB7) corresponding to “min”; and two oncogenes

(ERBB2 and MYC) and a candidate oncogenes (GRB7)
corresponding to “zero.” Our ICA gene shaving method
obtained all three oncogenes (ERBB2, CCND1, and MYC),
and three candidate oncogenes (GRB2, TPD52, and GRO1)
corresponding to “Algorithm 1”; two candidate oncogenes
(GRB2 and GRO1) corresponding to “Algorithm 2”; and
three candidate oncogenes (GRB2, TPD52, and GRB7)
corresponding to “Algorithm 3.” These genes were known
to contribute to the progression of breast cancer tumors but
were missed by the GSVD gene shaving method.

Our method was successfully used to locate important
genes that exhibit patterns of similar and dissimilar
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Fig. 11. The top highest variant genes of gene expression in 14 samples are retained using algorithm 3 in the study of breast cancer cell lines [15].
The pattern shows the highest parallel contributions to the iterative projections with gene shaving.

Fig. 12. The top highest variant genes with gene copy number changes in 14 samples are retained using algorithm 3 in the study of breast cancer cell
line [15].



variations. All three oncogenes and more candidate

oncogenes are obtained by the three algorithms of the

ICA gene shaving method, even if no patterns of similar

gene expressions are observed. “Algorithm 1” depends

more on the gene copy number data set, and “Algorithm 2”

depends more on the gene expression data set. “Algo-

rithm 3” uses both the gene expression and copy number

data sets equally. These algorithms are appropriate for

different data sets, which is similar to the GSVD method

when using different projection angles [28].

4 CONCLUSION

Combining genomic data from different sources promises

to be a very robust, reliable, and efficient technique. In this

paper, we integrate gene copy number changes with gene
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Fig. 13. The top three pictures are the lists of genes with the top 50 highest variant gene expression using three ICA gene shaving methods,

respectively. The bottom three pictures are the list of genes with the top 50 highest variant copy numbers using three ICA gene shaving methods,

respectively. The subsets of genes which have similar gene copy number changes can be identified. The data are from the study of breast tumors [42].

Fig. 14. The top three pictures are the lists of genes with the top 50 highest variant gene expression using three GSVD gene shaving methods,
respectively. The bottom three pictures are the lists of genes with the top 50 highest variant copy numbers using three GSVD gene shaving methods,
respectively. “max” indicates no significance in the copy number data set relative to the gene expression data set; “min” indicates no significance in
the gene expression data set relative to the gene copy number data set; “zero” indicates that genes may be of equal significance in both data sets.
The data are from the study of breast tumors [42].



expression for locating subsets of genes with similar and
dissimilar patterns of variations. The combined data sets
result in more accurate identification of gene subsets
associated with cancers and diseases. We compared the
ICA-based gene shaving method with the GSVD based
one. When tested on simulated data, the ICA gene shaving
method increased performance by about 10 percent over
that of the GSVD gene shaving in terms of the gene list
percentage similarity value, which indicates the improved
robustness of the method to noise. Statistical analysis was
performed using both copy number and expression data to
identify genes, showing differential expressions associated
with copy number alterations.

The SVD method has been used for the analysis of gene
expression and copy number data [26], which are, however,
not analyzed in an integrated manner. The GSVD-based
gene shaving method was proposed in [28] to integrate the
two data sets. It has been used to identify gene subsets in
breast cancer cell lines and breast cancer tumors, but also has
limitations. Our proposed ICA gene shaving method
improves this method by using a more realistic model, as
demonstrated in our simulation study. Furthermore, testing
on real breast cancer cell and breast tumor data shows that
the ICA gene shaving method can identify genes that were
missed by the GSVD gene shaving method, which are
known to contribute to the progression of breast cancers. All
three oncogenes and more candidate oncogenes can be
obtained with our ICA gene shaving method. This method
will contribute to better medical diagnosis and prognosis
with improved identification of gene subsets associated with
diseases and cancers.

The ICA method appears to be useful for gene data
analysis, but it also has some inherent limitations. If gene
component processes exhibit saturation or other nonlinear
properties, it may not be appropriate for analysis using a
wholly linear model. The ICA algorithm assumes that the
distribution for each signal component is statistically
independent. This criterion provides an essentially unique
decomposition of the data, but it may not necessarily be the
desired representation for all purposes. There are new
developments or other variants of ICA methods such as the
group ICA [29] and we are currently exploring their use in
integrated genomic data analysis.
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